

TNHFC Optical Receiver Operation and Maintenance Manual

1. Product Summary

TNHFC-MiniN-RCV optical receiver is the bidirectional equipment that is specially developed for HFC structure bidirectional metropolitan area broadband network. Rely on several years' research experience for **CATV HFC** fiber transmitting equipment. Take full account of the **FTTH** (Fiber to the Home) network topology, the engineering technology problem of **CATV** bidirectional return channel noise collection and the high reliability network security transmission requirements of modern **CATV** business. The return path adopts the burst mode (open the laser when have return signal), which greatly reduced the noise collection.

2. Performance Characteristics

- Laser control circuit adopts unique design, the work is reliable and stable.
- Excellent AGC characteristic, when the input optical power range is $-7 \sim +2$ dBm, the output level remains unchanged, CTB and CSO basically unchanged.
- Optimizing circuit design, SMT production process, optimizing the whole signal path, makes the photoelectronic signal transmission more stable, RF linear indicators higher.
- Professional RF attenuator circuit, with good attenuation linear and high precision.
- GaAs amplifier device, with good index, low distortion and high reliability.
- The return path control adopts burst mode, which greatly reduced the noise collection.
- The shell adopts aluminum die casting, cooling effect is good and the appearance is exquisite.

3. Technique Parameters

3.1 Link testing conditions

The performance parameters of this manual according to the measuring method of GY/T 194-2003 < Specifications and methods of measurement on optical node used in CATV systems >, and tested in the following conditions.

Test condition:

1. Forward optical receive part: with 10km standard optical fiber, passive optical attenuator and standard optical transmitter composed the testing link. Set 59 PAL-D analog TV channel signal at range of 47/85MHz \sim 550MHz under the specified link loss. Transmit digital modulation signal at range of 550MHz \sim 862/1003MHz, the digital modulation signal level (in 8 MHz bandwidth) is 10dB lower than analog signal carrier level. When the input optical power of optical receiver is -1dBm, the RF output level is 92dBµV, measure the C/CTB, C/CSO and C/N.

2. Backward optical transmit part: Link flatness and **NPR** dynamic range are the link indexes which is composed of backward optical transmitter and backward optical receiver.

Note: When the rated output level is the system full configuration and the receiving optical power is **-2dBm**, equipment meets the maximum output level of link index. When the system configuration reduce (that is, actual transmission channels reduce), the output level of equipment will be increased.

3.2 Technique Parameters

Itana	T I *4	Technique Parameters			
Item		TNHFC			
Forward Optical Receive Part					
Optical Parameters					
Receiving Optical Power	dBm	-7 ~ +2			
Suggested Use Range	dBm	-3 ~ +1			
Optical Return Loss	dB	> 45			
Optical Receiving Wavelength	nm	1100 ~ 1600			
Optical Connector Type		FC/APC, SC/APC (or specified by the user)			
Optical Fiber Type		Single mode			
Link Performance					
C/N	dB	\geq 51 received optical power (-1dBm)			
C/CTB	dB	≥63			
C/CSO	dB	≥ 60			
RF Parameters					
Frequency Range	MHz	47/54/70/85~862(1003)			
Flatness in Band	dB	±0.75			
Rated Output Level	dBµV	≥ 92			
Max Output Level	dBµV	≥ 92			
Output Return Loss	dB	≥16			
Output Impedance	Ω	75			
Reverse Optical Transmit Part					
Optical Parameters					
Optical Transmit Wavelength	nm	1310±10, 1550±10 or	specified by the user		
Laser Type		DFB or FP laser			
Optical Output Power	mW	0.5, 1, 2			
Optical Connector Type		SC/APC (or specified by the user)			
RF Parameters					
Frequency Range	MHz	$5 \sim 30/42/55/65$, (or specified by the user)			
Flatness in Band	dB	±0.75			
Input Level	dBµV	$75 \sim 85$ (Suggested input 80)			
Input Return Loss	dB	≥16			
Output Impedance	Ω	75			
NPR dynamic range	dP	≥15 (NPR≥30 dB)	≥10 (NPR≥30 dB)		
	UD	Use DFB laser	Use FP laser		
	General	Performance			
Power Voltage	V	DC12V			
Operating Temperature	°C	$-30 \sim +70$			
Storage Temperature	°C	-30^{-}	-+70		
Relative Humidity	%	Max 95% no condensation			
Consumption	W	<6			
Dimension	mm	154 (L) $\$ 116 (W) $\$ 26 (H)			

4. Block Diagram

5. Structure Diagram

*Note: Optical power>+2dBm—Red; +2dBm~-8 dBm;-8 dBm~ -15 dBm—Bright orange; <-15 dBm—OFF.

6. Common Failure Analysis and Troubleshooting

Failure phenomenon	Failure cause	Solution
After connecting the network, the image of the optical contact point has obvious netlike curve or large particles highlights but the image background is clean.	 The optical input power of the optical receiver is too high, make the output level of the optical receiver module too high and RF signal index deteriorate. The RF signal (input the optical transmitter) index is poor. 	 Check the optical input power and make appropriate adjustments to make it in the specified range; or adjust the attenuation of optical receiver to reduce the output level and improve index. Check the front-end machine room optical transmitter RF signal index and make appropriate adjustments.
After connecting the network, the image of the optical contact point has obvious noises.	 The optical input power of the optical receiver is not high enough, results in the decrease of C/N. The optical fiber connector or adapter of the optical receiver has been polluted. The RF input signal level of the optical transmitter is too low, make the modulation degree of the laser is not enough. The C/N index of system link signal is too low. 	 Check the received optical power of the optical contact point and make appropriate adjustments to make it in the specified range. Improve the optical received power of the optical contact point by cleaning the optical fiber connector or adapter etc methods. Specific operation methods see "Clean and maintenance method of the optical fiber connector". Check the RF input signal level of the optical transmitter and adjust to the required input range. (When the input channels number less than 15, should be higher than the nominal value.) Use a spectrum analyzer to check the system link C/N and make appropriate adjustments. Make sure the system link signal C/N > 51dB.
After connecting the network, the images of several optical contact points randomly appear obvious noises or bright traces.	The optical contact point has open circuit signal interference or strong interference signal intrusion.	 Check if there is a strong interference signal source; change the optical contact point location if possible, to avoid the influence of the strong interference signal source. Check the cable lines of the optical contact point, if there is shielding net or situation that the RF connector shielding effect is not good. Tightly closed the equipment enclosure to ensure the shielding effect; if possible, add shielding cover to the optical contact point and reliable grounding.
After connecting the network, the images of several optical contact points appear one or two horizontal bright traces.	Power supply AC ripple interference because of the bad earth of equipment or power supply.	Check grounding situation of the equipment, make sure that every equipment in the line has been reliably grounding and the grounding resistance must be $< 4\Omega$.
After connecting the network, the received optical power of the optical contact point is unstable and changes continuously. The output RF signal is also unstable. But the detected optical output power of the optical transmitter is normal.	The optical fiber connector types do not match, maybe the APC type connect to PC type. The optical fiber connector or adapter may be polluted seriously, or the adapter has been damaged.	 Check the type of optical fiber connector and adopt the APC type optical fiber connector to ensure the normal transmission of optical signal. Clean the polluted optical fiber connector or adapter. Specific operation methods see "Clean and maintenance method of the optical fiber connector". Replace the damaged adapter.

7. Clean and maintenance method of the optical fiber active connector

In many times, we consider the decline of the optical power as the equipment faults, but actually it may be caused by that the optical fiber connector was polluted by dust or dirt. Inspect the fiber connector, component, or bulkhead with a fiberscope. If the connector is dirty, clean it with a cleaning technique following these steps:

- **1.** Turn off the device power supply and carefully pull off the optical fiber connector from the adapter.
- 2. Wash carefully with good quality lens wiping paper and medical absorbent alcohol cotton. If use the medical absorbent alcohol cotton, still need to wait 1~2 minutes after wash, let the connector surface dry in the air.
- **3.** Cleaned optical connector should be connected to optical power meter to measure optical output power to affirm whether it has been cleaned up.
- **4.** When connect the cleaned optical connector back to adapter, should notice to make force appropriate to avoid china tube in the adapter crack.
- **5.** If the optical output power is not normal after cleaning, should pull off the adapter and clean the other connector. If the optical power still low after cleaning, the adapter may be polluted, clean it. (Note: Be carefully when pull off the adapter to avoid hurting inside fiber.)
- 6. Use compressed air or degrease alcohol cotton to wash the adapter carefully. When use compressed air, the muzzle aims at china tube of the adapter, clean the china tube with compressed air. When use degrease alcohol cotton, insert directions need be consistent, otherwise can't reach a good clean effect.