

100G QSFP28 CWDM4 2km Optical Transceiver Specification

Features

- QSFP28 Serial Optical Interface
 - > Supports 103Gb/s data rate
 - > 4*25G CWDM DML Lasers for up to 2km
 - > 4 channels PIN detector
- QSFP28 MSA Compliant
 - > Compliant with SFF-8679 for electrical interface
 - > CAUI-4 High Speed electrical interface
 - > Compliant with SFF-8661 for mechanical interface
 - > QSFP28 Mechanical Interface for easy removal
 - > Duplex LC Receptacle
 - > Compliant with SFF-8636 for 2-wire interface for management and DDM
- Support Protocol
 - > CWDM4 MSA
 - > QSFP28 MSA
- Low Power Consumption
 - > Less than 3.5W in temperature range of 0 to 70°C

Applications

- 100G CWDM4 Ethernet links
- Data Center Interconnect
- Infiniband QDR and DDR interconnects

www.luxqlo.com Page 1 of 10

1. General Description

L-QSFP28-CWDM4-2 transceiver modules are designed for 100Gigabit Ethernet over 2km single mode fiber. They are compliant with the 100GBASE-CWDM4. Each transceiver incorporates four direct modulated lasers with driver ICs, four PIN diodes with TIAs, and two Mux/De-Mux blocks in a highly integrated CWDM4 configuration for operation over duplex LC connectors. Mechanical dimensions, connectors and the footprint of this product is QSFP28 specifications compliant. Digital Diagnostics functions are available via a 2-wire serial interface, as specified SFF-8636.

2. Absolute Maximum Ratings and Recommended Operating Conditions

Table 2.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Tst	-40	85	°C
Relative Humidity (non-condensation)	RH	5	95	%
Supply Voltage	VccR/VccT	-0.5	3.6	V
Damage Threshold, each Lane ^[1]	THd	3.5	-	dBm

Table 2.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Case Temperature	Торс	0	70	°C
Relative Humidity(non-condensing)	Rhop	5	85	%
Power Supply Voltage	VccR/VccT	3.135	3.465	V
Power Supply Current	Irt	-	1050	mA
Total Power Consumption	Pc	-	3.5	W

www.luxqlo.com Page 2 of 10

3. Optical Specifications

3.1 Optical Transmitter

Table 3.1 Transmitter Optical Interface

Para	meter	Symb	Min	Typic	Max	Unit
		ol		al		
Data rate per channel	100G Base CWDM4			Gbps		
		LO	1264.5	1271	1277.5	nm
Center Waveleng	th	L1	1284.5	1291	1297.5	nm
osme mareneng	•••	L2	1304.5	1311	1317.5	nm
	L3	1324.5	1331	1337.5	nm	
Side Mode Suppression Ratio		SMSR	30			dB
Total Average La	unch Power	P _T			8.5	dBm
Average launch p	ower, each Lane	P _{avg}	-6.5		2.5	dBm
OMA, each lane		Рома	-4		2.5	dBm
Transmitter and d	ispersion penalty	TDP			3	dB
Average launch power of Tx OFF		P _{ave_off}			-30	dBm
Extinction ratio		ER	3.5			dB
Optical Power for				-30	dBm	
Transmitter Refle	ctance				-12	dB

www.luxglo.com Page 3 of 10

3.2 Optical Receiver

Table 3.2 Receiver Optical Interface

Pa	rameter	Symb ol	Min	Typic al	Max	Unit
Data rate per channel	100G Base CWDM4			25.78125		Gbps
		L0	1264.5	1271	1277.5	nm
Center Wa	velenath	L1	1284.5	1291	1297.5	nm
	Contor Wavelength		1304.5	1311	1317.5	nm
		L3	1324.5	1331	1337.5	nm
_	Average receiver power, each lane ^[1]		-11.5		2.5	dBm
Sensitivi	100G Base CWDM4, OMA per lane ^[2]				-10	dBm
ty -	Stressed receiver sensitivity (OMA), each lane ^[3]				-7.3	dBm
Rx LOS	Assert Rx LOS		-24			dBm
	De-assert				-11.6	dBm
	Hysteresis		0.5			dB
Receiver R	eflectance				-26	dB

Notes:

- 1. Minimum value is informative, equals min TxOMA with infinite ER and max channel insertion loss
- 2. Receiver sensitivity is measured with conformance test signal for BER=5x10⁻⁵.
- 3. Measured with conformance test signal at TP3 for BER = 5x10-5

4. Electrical Specifications

Table 4.1 High Speed Electrical Specifications

Parameters	Min	Typic al	Max	Unit
Signaling rate per lane		25.78125		Gbps
Supply voltage	3.135		3.465	V
Input differential impedance		100		Ω
Differential data input swing	190		1000	mV
Differential data output swing	300		900	mV

Table 4.2 2-wire Electrical Specifications

rable 4.2 2-wire Electrical Opecifications					
Parameter	Symbol	Min	Max	Unit	
Host 2-wire Vcc voltage	Vcc_Host_2w	3.14	3.46	V	
	Vol	0.0	0.40	V	
SCL and SDA Voltage ^[1]		Vcc_Host_2w	Vcc_Host_2w		
	Vон	-0.5	+0.3	V	
	VIL	-0.3	VccT*0.3	V	
	ViH	VccT*0.7	VccT+0.5	٧	
Input current on the SCL and SDA contacts	lı	-10	10	mA	

Notes:

1. These voltages are measured on the other side of the connector to the device under test

www.luxglo.com Page 5 of 10

5. User Interface

5.1 Management Interface

2-Wire Serial Address: 1010000x (A0H)

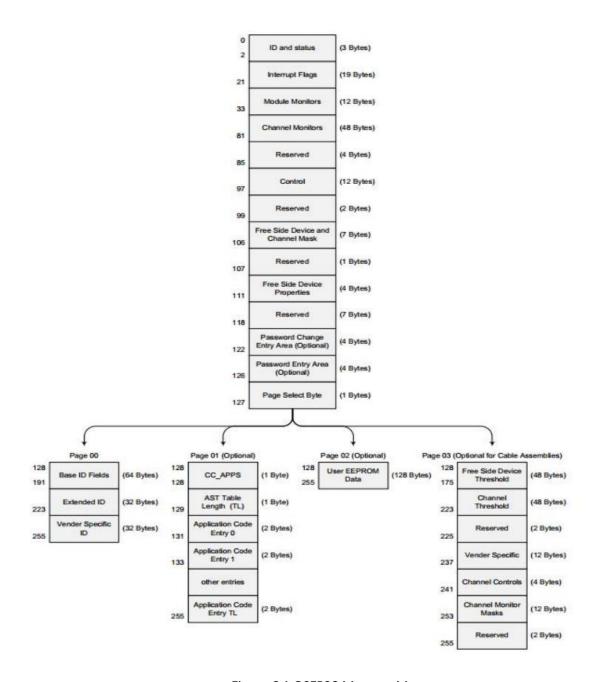


Figure 6.1 QSFP28 Memory Map

www.luxglo.com Page 6 of 10

5.2 Digital Diagnostic Monitor Accuracy

The following characteristics are defined over recommended operating conditions.

Table 6.2 Digital Diagnostic Monitor Accuracy

Parameter	Accuracy	Unit
Internally Measured Transceiver Temperature	±3	°C
Internally Measured Transceiver Supply Voltage	±3	%
Measured Tx Bias Current	±10	%
Measured Tx Output Power	±2	dB
Measured Rx Received Average Optical Power	±2	dB

6. Pin Assignment and Pin Description

6.1 PIN Definitions

QSFP28 transceiver pad layout, host PCB QSFP28 pinout, and PIN descriptions are as follows:

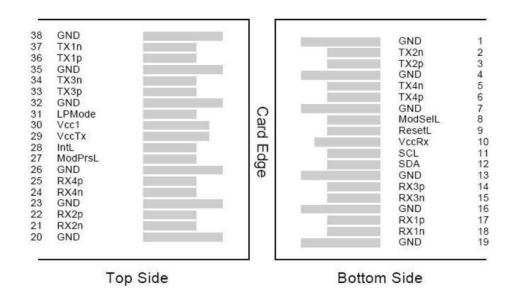


Figure 6.1 QSFP28 Transceiver Electrical Pad layout

www.luxglo.com Page 7 of 10

6.2 PIN Description

Table 7.2 Pin Description

Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	3
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	3
7		GND	Ground	1	1
8	LVTTL-I	ModselL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		Vcc Rx	+3.3V Power Supply Receiver	2	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	3
15	CML-O	Rx3n	Receiver Inverted Data Output	3	3
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	3
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	3
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL	Interrupt	3	
29		Vcc Tx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode	Low Power Mode	3	
32		GND	Ground	1	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3	3
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	3
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

Note:

[1] GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

[2] Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently.

www.luxglo.com Page 8 of 10

6.3 Multiplex LPMode and IntL

The LPMode PIN is multiplexed for TX_Disable and IntL PIN multiplexed for Rx_LOS according to customers' requirements

Table 6.3 Multiplex LPMode and IntL table

	LPMode	TX_Disable	IntL	RX_LOS
High	Asserted	Asserted	De-asserted	Asserted
Low	De-asserted	De-asserted	Asserted	De-asserted

Following MSA's design concept, when a new control feature is added, there should be two fields to define for the new feature, advertise (Read-Only) field to indicate if the feature is supported, and control field (R/W) to configure the new feature. In SFF8636, most of register in page 0 low are defined as R/W registers. Most register in page 0 high are defined as Read-Only registers.

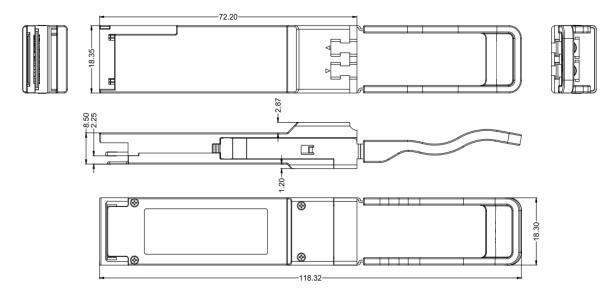
Table 6.4 Definition of configuration register for Multiplex function

		ingulation register for infultiplex function
Registers	State	Description
0		IntL pin only. RX_LOS pin not supported.
Bit 0		
	1	Both IntL and RX_LOS supported.
	0	LPMode pin only. TX Disable not supported.
Bit 1		
1		Both LPMode and TX Disable supported

Table 6.5 Definition of control register for Multiplex function

Registers	State	Description
Bit 0	0	IntL pin active
	1 (Default)	RX_LOS active
Bit 1	0	LPMode pin active
	1 (Default)	TX Disable active

Note:


Register is read-only during high power mode and can only be modified at lower power mode.

www.luxglo.com Page 9 of 10

7. Package Dimensions

Figure 7.1 shows the package dimensions of the module. The module is designed to be complaint with QSFP28 MSA specification. Package dimensions are specified in SFF-8661.

9.2 Electromagnetic Compatibility

All transceivers are designed to meet FCC Class B limits.

8. Ordering Information

Part Number	Temperature Range	Distance	Fiber Type	E/O	O/E
L-QSFP28- CWDM4-2	0°C to + 70°C	2km	SMF	DFB 1271nm 1291nm 1311nm 1331nm	PIN

www.luxglo.com Page 10 of 10